Self-Organizing Genetic Algorithm: A Survey

نویسندگان

  • Amouda Nizam
  • Buvaneswari Shanmugham
چکیده

Self-organization systems are an increasingly attractive dynamic processes without a central control, emerge global order from local interactions in a bottom up approach. The advantage of blending the concept of self-organization enhances the working efficiency of other techniques to find a solution of huge search problem. Genetic Algorithms (GA) is such a technique, inspired by the natural evolution process, used to solve difficult optimization problem of large space solution, for an example, multiple sequence alignment (MSA) problem in a bioinformatics research. Self-organization technique automates the selection of appropriate parameter values of GA during execution without the user's intervention. An attempt towards applying Self-organizing Genetic Algorithm (SOGA) on MSA requires a complete knowledge of the various parameters of SO and its relationships. This lead us to make a complete survey on inherent properties of SO and the method of blending GA in order to develop a self-organizing genetic algorithm (SOGA) for MSA. The aim of the research is to make use of the efficiency of GA without getting any input from the non-trained users to tune the parameters in order to achieve the expected result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Rule Extractor for Diagnosing the Type 2 Diabetes Using a Self-organizing Genetic Algorithm

Introduction: Constructing medical decision support models to automatically extract knowledge from data helps physicians in early diagnosis of disease. Interpretability of the inferential rules of these models is a key indicator in determining their performance in order to understand how they make decisions, and increase the reliability of their output. Methods: In this study, an automated hyb...

متن کامل

Kohonen Self Organizing for Automatic Identification of Cartographic Objects

Automatic identification and localization of cartographic objects in aerial and satellite images have gained increasing attention in recent years in digital photogrammetry and remote sensing. Although the automatic extraction of man made objects in essence is still an unresolved issue, the man made objects can be extracted from aerial photos and satellite images. Recently, the high-resolution s...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Uncertainty Modeling of a Group Tourism Recommendation System Based on Pearson Similarity Criteria, Bayesian Network and Self-Organizing Map Clustering Algorithm

Group tourism is one of the most important tasks in tourist recommender systems. These systems, despite of the potential contradictions among the group's tastes, seek to provide joint suggestions to all members of the group, and propose recommendations that would allow the satisfaction of a group of users rather than individual user satisfaction. Another issue that has received less attention i...

متن کامل

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013